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Abstract—Perinatal anoxia, which is the deprivation of oxygen
during the birthing process, can arise due to various factors
and, if prompt intervention is not administered, can lead to
hypoxic-ischemic encephalopathy, a leading cause of neonatal
death. However, this can be averted if quickly identified, by
submitting the newborn to controlled hypothermia. This work
aims to assess the level of severity of the encephalopathy and the
need of hypothermia through time series classification. Random
convolution kernels were applied to 105 EEG signal values, and
were used to generate the inputs for a ridge classifier using the
ROCKET algorithm. The final accuracy of 80% was evaluated
on 45 EEGs, which is similar to methods using feature extraction.
One potential factor contributing to a lower accuracy could be
the manual attribution of classes, which was executed by a few
doctors and does not follow objective and quantitative criteria.
This could be improved upon by employing many doctors for
diagnostic agreement in order to mitigate personal bias.

Index Terms—EEG, neonatal, perinatal anoxia, ROCKET,
artificial intelligence

I. INTRODUCTION

Lack of oxygen in the brain during the birthing process,
known as perinatal anoxia, if left untreated beyond the first
6 hours of life, may potentially lead to hypoxic-ischemic en-
cephalopathy (HIE), a leading cause of neonatal mortality [1].
However, recent research, notably the study conducted by [2],
demonstrated that the severity of the injury caused by perinatal
anoxia can be evaluated through quantitave analysis of EEGs
recorded during the first few hours after birth, which can be
divided in three levels according to the French classification
system for HIE [3]. Nevertheless, the interpretation of EEGs
typically requires the expertise of a specialized neurologist,
which may not be readily available in every hospital. Thus,
the necessity of automated analysis arises.

There are a number of ways to make use of EEGs in the
literature, the most common being feature extraction, followed
by using raw signals [4]. Building upon the previous study,
conducted by [2], which calculated metrics from the EEGs
and fed them into an SVM model to obtain the predictions,
this work shifts the focus, and exploits the raw signals from
the EEGs themselves. To make use of these raw signals, they
are transformed by employing random convolution kernels

(ROCKET), a method developed by [5], which has demon-
strated being efficient in scenarios with a small amount of
data and low computational power.

II. METHODS

A. Dataset

The data used in this study, which corresponds to the same
dataset utilized in [2], was obtained at the hospital ”CHU de
Lille”, upon the completion of all necessary ethical procedures.
The dataset comprises of 150 EEGs, with 59 classified as level
1, 48 classified as level 2 and 43 classified as level 3, according
to the aforementioned classification system.

Each EEG file contains signal recording of eight electrodes,
namely F4, F3, C3, C4, T3, T4, O1 and O2. The recordings
were captured at a sampling rate of 256Hz and varied in
duration. In order to normalize it, the procedure was to
divide the signal into windows. Different window lengths
were experimented with, and it was determined that 3-minute
windows provided the best results. Subsequently, the EEG files
were divided into train and test sets for model development
and evaluation.

Provided the fact that each EEG file produces a different
number of windows (due to the variable length of the record-
ing), the following systematic procedure was adopted to avoid
data leakage:

1) Divide all EEG files into three stacks, of severity 1, 2
and 3

2) For each stack:
a) Organize stack in a descending order by length of

recording
b) Pop the first item and add it to the train or test pool,

whichever drives the train/test proportion closer to
the desired value.

c) Repeat until current stack is empty.
3) Merge train pool for all the severity values. Do the same

with test pool.
4) Balance each pool to have the same amount of each

severity in it.



Following this procedure, the train set consisted of 105 EEG
files, which correspond to a total of 1473 time windows (491
windows per severity group). Similarly, the test set consisted
of 45 EEG files, yielding a total of 636 time windows (212
windows per severity group).

B. Model

Differently from prior approaches that computed specific
signal metrics, such as averages or amplitudes, this work takes
a different approach, by directly inputting the raw EEG signal
into the model. The time series data is then transformed by the
ROCKET method, introduced by [5], which generates random
convolution kernels. These kernels are convolved with the
time series, resulting in new feature vectors. These generated
features were used to train a ridge classifier, as recommended
by [5]. To accommodate the multi-electrode nature of the EEG
data, a separate model was trained for each electrode, yielding
8 models. The responses of these models are aggregated to
provide one final result for each file.

III. RESULTS

A. Results on individual time series

To assess the accuracy of each model, the results obtained
are summarized in Table I:

TABLE I: Accuracy for each electrode

Electrode Accuracy
F3 58.81%
F4 59.52%
T3 66.43%
C3 66.67%
C4 58.34%
T4 63.45%
O1 68.81%
O2 67.86%

Mean 63.73%

However, the goal of training multiple models lies in the
aggregation of their responses. By applying the mode of the
responses for each time window, the accuracy increases to
76.07%. The confusion matrix for the individual time series
is displayed in Figure 1a.

B. Results on files

However, the primary objective is to evaluate the overall
level of an entire EEG file, rather than the individual win-
dows. Therefore, a histogram is calculated considering all
the windows within each file, and the most prevalent class
is considered the final prediction for the file. The accuracy
evaluated for the 45 test files is 80%. The confusion matrix can
be seen in Figure 1b, and an example of the results produced
by the model can be seen on Figure 2.

IV. CONCLUSION AND DISCUSSION

Based on the results achieved, we can verify that predicting
the level of severity for individual windows and combining the
responses from each electrode results in notable benefits, and
increases the accuracy by approximately 12%. Additionally,

(a) Ridge classifier (b) Test files

Fig. 1: Confusion matrices

Fig. 2: Example of output from model

when evaluating the response based on the histogram gener-
ated for the files, there is further improvement of around 4%
in accuracy. The accuracy is the same as the one obtained
by [2], however, the recall is higher for classes 1 and 3, and
the precision is higher for class 2. The F1 score for class
3 is also higher. Furthermore, dividing the raw signal into
windows renders the model output more explainable, which is
vital in a health environment, and the processing of raw signal
data diminishes the need of third-party software for metrics
calculation.

It is worth noting that all the errors in prediction are
concentrated within the second column or second row of the
confusion matrix, indicating a particular issue with the second
class of severity. This issue has been previously addressed by
[2], suggesting that one of the causes may be the manual eval-
uation performed by doctors. This may be counter measured
by obtaining the diagnostic of different doctors for the dataset,
as an attempt to reduce personal bias.
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